The Evolving Landscape of Computer Vision and Its Business Implications

By Umang Dayal

March 7, 2024

How do you instruct a machine to see? And what is this vision capable of?

Computer vision enables machines to extract information from data sets such as images, videos, or other visual elements. Using this information, these AI models can make specific decisions or perform dedicated tasks. 

This technology harmoniously integrates with current business operations and offers novel solutions to various industries. As computer vision is expanding AI algorithms are improving its ability to recognise objects, faces, and even human emotions. In this blog, we will explore how computer vision works and how it’s evolving future landscape. 

How Computer Vision ‘Sees the World’?

Computer vision sees the world the same way as we do. It has its own set of eyes such as sensors, cameras, and radars to collect visual data and perceive information. 

But the real magic is what happens after this visual data is collected. Advanced algorithms function like a human brain and learn vast information, recognize visuals, and interpret complex data. These neural networks can be trained using millions of data points and accurately identify objects and make predictive decisions. 

By understanding and studying how our brain functions, scientists have enhanced computer vision capabilities making it more adept at processing intricate visuals with over 95% accuracy. 

How Computer Vision is Transforming Businesses?

Autonomous Driving

Autonomous driving is no longer confined to future prototypes, many successful automobile manufacturers are already using it. Tesla’s autopilot system is designed based on computer vision technology that recognizes obstacles, pedestrians, and traffic signals to make human-like decisions while driving. 

Acting as the eyes of self-driving cars, computer vision can identify and interact with the environment. Algorithms quickly adapt and detect reliable pathways using automated sensors for animals or pedestrians to avoid collisions. 

Augmented Reality

Computer vision is smoothly transitioning our lives from real to virtual worlds. Augmented reality is already being used in the Apple Vision Pro device that allows users to see and interact with virtual reality. These technologies allow computer vision to recognize objects, shapes, and orientations in a 3D environment. In Natural Navigation, users can navigate through virtual space or manipulate objects as CV systems track their gestures and movements. In Augmented Reality (AR), CV systems are being used to detect and track objects, count the number of people, and create virtual maps using Simultaneous Localization and Mapping (SLAM). This technology is already revolutionizing various industries such as healthcare, education, gaming, space, and tourism.

Learn more: 5 Best Practices To Speed Up Your AI Projects With Effective Data Annotation

Healthcare

Medical experts and doctors constantly use computer vision systems to analyze scans and images to identify and diagnose diseases. CV algorithms can differentiate between healthy tissues and cancerous cells and provide accurate analysis for record keeping and medical procedures. For example, during surgical operations, these AI systems can be trained to ensure that no medical equipment is left inside the body after the surgery is completed.

One example of a groundbreaking CV model in healthcare is Google’s DeepMind, which can detect more than 50 eye diseases with 94% accuracy even surpassing medical experts. This tool is the perfect example of how computer vision can help in early diagnosis and treatment to save millions of lives. 

Retail

Computer vision in the retail industry is helping experts to understand customer behavior and shopping preferences. For example, Amazon GO store is using computer vision technology to allow customers for automatic checkouts. You can simply walk into these stores, pick up your items, and leave. These smart CV systems automatically detect your purchased items and bill your accounts.

This seamless integration of commerce and computer vision is simplifying retail operations and enhancing customer experience. These AI-based algorithms are also helping retailers personalize marketing strategies to increase sales, gather insights, and enhance customer satisfaction.  

Learn more: Navigating the Challenges of Implementing Computer Vision in Business

Agriculture

Based on a case study by the University of Illinois, implied the benefits of computer vision in agriculture. Where precision farming can increase crop yield by 20%, and reduce the use of fertilizers by 15%. This technical innovation is highly efficient in areas where water resources and fertilizers are significantly used.

The integration of agriculture with computer vision is enabling farmers to monitor crops with drone cameras to survey fields and utilize computer vision algorithms to gather data on soil conditions, crop health, or pest infestation.  

Future Landscape of Computer Vision

Computer vision’s evolving landscape is helping humans to reduce the burden of identifying egregious content. Major social media platforms are already using CV systems for image, video, and text moderation which can perform these tasks quickly and efficiently. Computer vision is less likely to make mistakes as machines can be trained to work for long hours and perform non-stop, and the best part is, that they don’t get tired eyes or general fatigue.

There are more than 300 million photos uploaded on Facebook alone, and every minute users post 510,000 comments and 293,000 status updates. While the majority of content is benign a large number is considered harmful for users. Facebook now alone has 15,000 moderators and according to a report, the company’s human moderators and AI systems flag more than 3 million content daily. 

The evolving potential of computer vision is filled with endless possibilities. Imagine using CV systems for precision surgical procedures with increased accuracy and reduced recovery time, a smart city where all traffic lights and vehicles are guided by intelligent CV systems that can react in real-time, reducing traffic and accidents. Augmented reality will become so advanced that you can interact with the physical and virtual worlds in real time. These technical innovations will redefine how we do business and revolutionize technology for personal use. 

Final Thoughts

We are already seeing a transformative impact of computer vision in various industries. In Agriculture, farmers are utilizing CV technology to monitor crops, reduce pesticides, and detect crop diseases to optimize farm yield. In the retail industry, companies are enhancing customer experience with cashless shopping stores. Autonomous cars are using driver assistance systems and improving safety protocols for humans. 

Overall, computer vision holds the potential to revolutionize manufacturing, healthcare, automotive, transportation sectors, and many more. This technology has the power to transform and reshape the future and the world we live in.

At Digital Divide Data, we are dedicated to providing computer vision solutions for various industries. 

Previous
Previous

Deep Learning in Computer Vision: A Game Changer for Industries

Next
Next

The Art of Data Annotation in Machine Learning