

Changing How
the World Works.

MAXIMIZING AV PERFORMANCE: OPTIMIZING WORKFLOW ARCHITECTURE CHOICES

The quest for optimizing autonomous vehicle performance is a perpetual balancing act.

Image via DepositPhotos.com.

How well does your AV perform in real situations? Imagine being asked that question. Where might you start? You'd likely return a few questions to scope the ask. And you'd likely have some operating conditions where you're highly confident, some conditions where you're not so confident, and some where you're unsure.

As you'll discover, you can group those answers into meaningful, actionable insights to drive system-level, scenario-specific performance improvements. You'd need those insights because the quest for optimizing autonomous vehicle (AV) performance is a perpetual balancing act. Every decision, from sensor selection to algorithm design, affects how an AV perceives, interprets, and responds to its environment.

One of the most fundamental decisions AV developers face is choosing the right workflow to process and analyze the vast amounts of data generated during AV operations. The choice is both technical and strategic. It affects the entire development process, influencing efficiency, cost, and, ultimately, the safety and reliability of your AV system.

Each approach has strengths and weaknesses, particularly when analyzing critical events such as driver takeovers, safety interventions, and unexpected AV behaviors. Understanding these trade-offs is crucial for making informed decisions that align with your project's goals and resources.

Coming up, we'll dive into:

- The technical underpinnings of each workflow type.
- The practical implications of each approach on your AVP, VNV, and triage processes.
- Best practices for implementing and optimizing each workflow.
- Strategies for navigating the trade-offs and selecting the best fit for your requirements.

Whether you're tackling challenges in perception, planning, or control systems, the choice of workflow has far-reaching implications for your AV projects. Our goal is to equip you with the knowledge and insights you need to make confident decisions about your data processing and analysis pipelines.

Monolithic workflows: A holistic approach to AV performance analysis

Monolithic workflows process entire events through a single pipeline.

Image via DepositPhotos.com.

Monolithic workflows represent a comprehensive approach to analyzing events and scenarios, particularly in AVP, VNV, and triage processes. In this approach, analysts or integrated systems process entire events through a single, cohesive pipeline, akin to a master craftsman overseeing every aspect of a complex project.

Key characteristics and advantages of monolithic workflows

Monolithic workflows in AV analysis offer distinctive features and benefits that set them apart from other approaches. Understanding those characteristics lets you determine whether a workflow fits your AV development process. In a monolithic workflow, by definition, the analysis happens in one shot, with one analyst contributing all the insights. Sometimes, another analyst validates the inputs, but the underpinning concept is that each analyst carries out the scenario analysis throughout the process.

- **Comprehensive analysis:** Considering all AV performance aspects, one analyst or system processes an event from start to finish. This holistic view lets you identify subtle interactions and issues you might miss in segmented approaches.
- **Contextual understanding:** The approach gives you a nuanced understanding of events, uncovers complex interactions, and provides rich insights into system behaviors.
- **Flexibility for unusual scenarios:** Monolithic workflows are good for detecting and categorizing edge cases and unusual events that don't fit neatly into predefined categories.
- **Direct feedback loop:** Analysts can give detailed, contextual feedback directly to engineering teams, potentially accelerating the iterative improvement process.
- **Single-pass efficiency:** The entire analysis, from initial data input to final insights, happens in one cohesive process, which can be more efficient.

Example monolithic workflow scenario

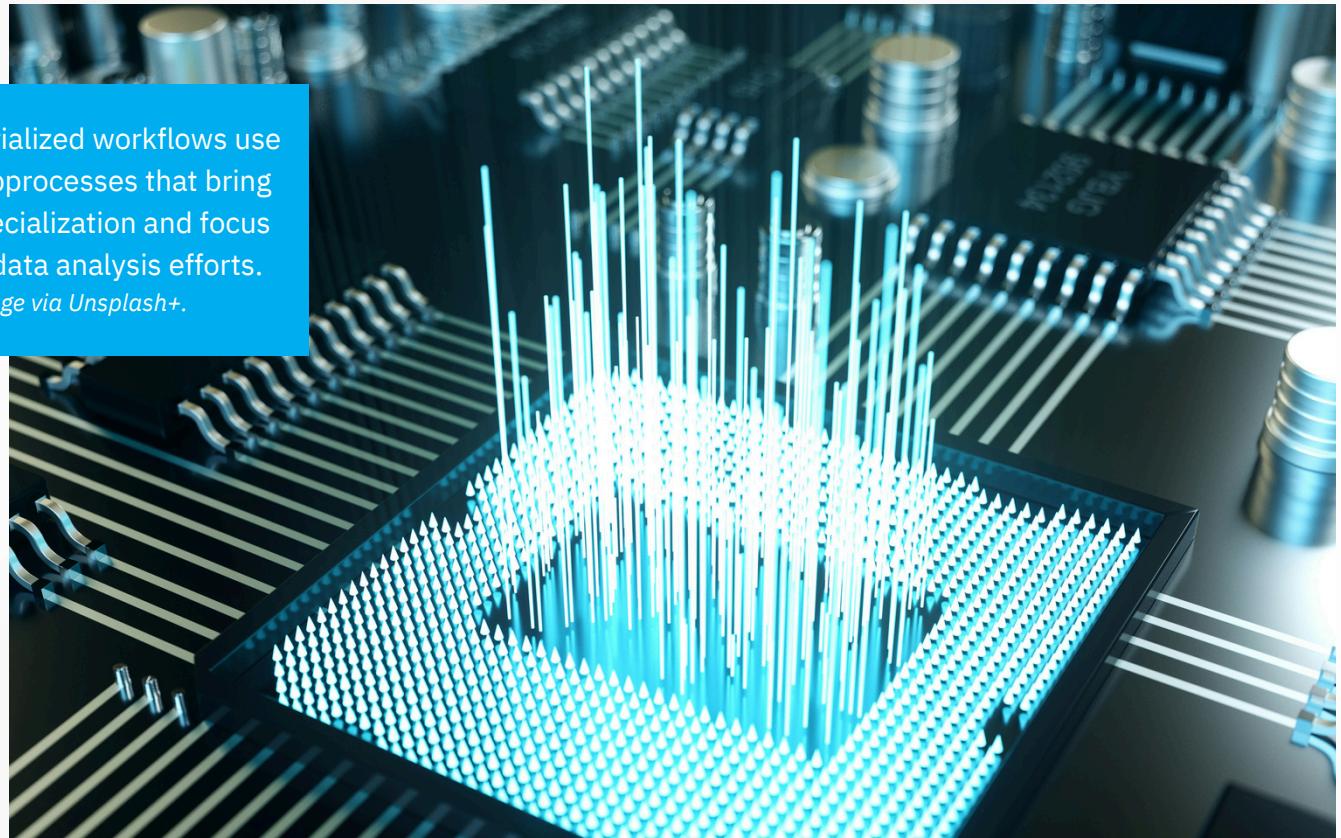
To illustrate how a monolithic workflow functions, imagine an unexpected safety driver takeover. Here's how the scenario might play out in a monolithic workflow.

- **Event review:** A single analyst reviews the entire event.
- **Takeover classification:** They determine the takeover type (e.g., collision avoidance).
- **Cause analysis:** The same analyst uncovers why the takeover happened (e.g., an unexpected object on the road).
- **AV behavior assessment:** They assess the AV's behavior leading up to the event.
- **Response evaluation:** The analyst evaluates the appropriateness of the AV's response.
- **Event categorization:** They categorize the event for future learning and system improvement.

This approach considers all factors that might have contributed to the safety driver's decision to intervene and gives you a detailed understanding of the event.

Challenges of monolithic workflows

Although monolithic workflows offer strong advantages, they also come with challenges teams must navigate.


- **High expertise requirement:** To analyze an entire scenario, analysts need broad and deep knowledge of AV systems, which can be hard to develop and maintain.
- **Potential for inconsistency:** Different analysts might interpret complex scenarios differently, leading to inconsistencies in data labeling or event classification.
- **Scalability issues:** As data volume and complexity increase, monolithic workflows can become bottlenecks that slow the analysis process.
- **Training intensity:** Keeping analysts up-to-date with new AV technologies and methodologies means ongoing training efforts.

Best practices for implementing monolithic workflows

Consider implementing these best practices to get the most from your monolithic workflows.

- **Comprehensive training:** Ensure analysts thoroughly understand the entire AV system, including sensors, decision-making algorithms, and common failure modes.
- **Robust quality control:** Implement regular cross-checking and peer review to maintain consistency across analysts.
- **Critical thinking encouragement:** Train analysts to look beyond obvious issues and consider complex AV system interactions.
- **Open communication channels:** Give analysts direct lines of communication with engineering teams so they can quickly escalate unusual or critical findings.
- **Regular retraining:** Update analysts on new AV system features, algorithms, and potential issues to watch for.
- **Process analysis:** When the quality or performance declines and training cannot recover previous standards, breaking the monolith into serialized components may be necessary.

While demanding in terms of expertise and resources, the monolithic workflow approach can provide invaluable insights into improving AV safety, reliability, and performance.

Serialized workflows: Breaking down AV analysis for precision and efficiency

Serialized or component-based workflows represent a structured approach to analyzing AV events and scenarios. This method breaks the analysis process into distinct, sequential stages, each focused on a specific aspect of AVP, VNV, or triage.

Key characteristics and advantages of serialized workflows

Serialized workflows in AV analysis offer several features and benefits that make them useful for complex AV development processes. The critical difference in this approach is that you create subprocesses within the overall scenario analysis process to specialize and focus the data analysis efforts.

- **Specialized focus:** Each workflow stage concentrates on a specific aspect of an event or scenario, allowing for a deeper analysis of individual components.
- **Efficiency through specialization:** Analysts can become experts in their specific stage, increasing accuracy and throughput for that analysis aspect.
- **Scalability:** The modular nature of serialized workflows allows for easier scaling as data volumes increase, allowing you to add resources to specific stages as needed.
- **Consistency:** By breaking the process into discrete steps, it's easier to add standardized procedures and quality controls at each stage.
- **Flexibility:** You can add, remove, and modify stages as AV systems evolve, allowing the workflow to adapt to changing requirements.

Example serialized workflow scenario

To illustrate how a serialized workflow functions in practice, let's revisit the scenario of an unexpected safety driver takeover—but this time processed through a serialized workflow.

- **Event identification:** An initial analyst identifies the event as a safety driver takeover.
- **Takeover classification:** A specialist in takeover events classifies the type of takeover (e.g., collision avoidance).
- **Environmental analysis:** An environmental specialist analyzes the road conditions, traffic, and other external factors at the time of the event.
- **AV behavior assessment:** An AV systems expert evaluates the vehicle's behavior leading up to the takeover.
- **Human factors analysis:** A human factors specialist assesses the safety driver's response and decision-making process.
- **Root cause determination:** A senior analyst synthesizes the information from previous stages to determine the takeover cause

This step-by-step approach allows for a detailed analysis at each stage, with specialists applying their expertise to specific event aspects.

Challenges of serialized workflows

Serialized workflows also introduce certain challenges in the context of AV analysis.

- **Potential for information loss:** Analysts might overlook nuanced context or subtle interactions not explicitly captured and passed along as data moves between stages.
- **Coordination complexity:** Managing the flow of information between stages and ensuring all analysts have the necessary context can be challenging.
- **Longer total processing time:** While individual stages may be more efficient, the overall process can take longer due to handoffs between stages.
- **Risk of siloed thinking:** Analysts focused on their specific stage might miss broader patterns or system-level issues that a more holistic approach might catch.

Best practices for implementing serialized workflows

Consider implementing the following best practices to get the most from serialized workflows.

- **Clear stage definitions:** Clearly define each stage's scope, inputs, and outputs to ensure smooth transitions and a comprehensive analysis.
- **Robust information transfer:** Create systems that ensure analysts pass all relevant information, including nuanced observations, between stages.
- **Cross-training:** Although specialization is key, analysts should also have a basic understanding of other stages to maintain a system-level perspective.
- **Quality control checkpoints:** Add quality checks between stages to catch and correct issues early.
- **Feedback loops:** Establish mechanisms for downstream stages to give feedback to earlier stages, allowing for ongoing improvement of the entire workflow.

Serialized workflows allow AV development teams to achieve a detailed, consistent analysis of complex events and scenarios. This approach is particularly valuable when dealing with large volumes of data or when deep, specialized expertise is required at various stages of the analysis process.

Dual-channel workflows: Balancing holistic insight and specialized analysis

Dual-channel workflows represent a hybrid approach to analyzing AV events and scenarios, combining elements of both monolithic and serialized workflows. This method uses the strengths of both approaches to enhance AVP, VNV, and triage processes.

Dual-channel workflows effectively address the complexities of modern AV development.

Image via DepositPhotos.com.

Key characteristics and advantages of dual-channel workflows

Dual-channel workflows in AV analysis address the complexities of modern AV development. They combine the best of monolithic and serialized workflows to supplement the risks of both processes while managing additional time and effort.

- **Complementary processing:** The approach uses two parallel channels—one for high-volume, standardized tasks and another for complex, nuanced analysis.
- **Balanced expertise:** It allows for specialized focus in the serialized channel and system-level insights in the monolithic channel.
- **Flexibility and scalability:** The dual-channel approach can adapt to varying workloads and complexity levels, allocating resources efficiently between channels.
- **Enhanced anomaly detection:** The monolithic channel can identify unusual patterns or edge cases you might miss in a purely serialized approach.
- **Efficient resource utilization:** The serialized channel processes routine tasks quickly, while the monolithic channel treats complex scenarios in depth.

Example dual-channel workflow scenario

To illustrate how a dual-channel workflow functions, let's return to the unexpected safety driver takeover scenario—this time processed through the hybrid approach.

Serialized channel - specialists for each step in the analysis

- **Event identification:** An initial analyst identifies the event as a safety driver takeover.
- **Takeover classification:** A different specialist classifies the takeover type (e.g., collision avoidance).
- **Environmental analysis:** An expert analyzes road conditions and traffic at the time of the event.
- **AV behavior assessment:** A systems expert evaluates the vehicle's behavior leading up to the takeover.

This step-by-step approach allows for a detailed analysis at each stage, with specialists applying their expertise to specific event aspects.

Monolithic channel - generalists with overall system knowledge leveraged into an all-in-one step

- **Holistic review:** A senior analyst reviews the entire event, considering all factors simultaneously.
- **System-level analysis:** They assess how different components of the AV system interacted during the event.
- **Anomaly detection:** The same analyst identifies unusual patterns or behaviors that might not fit standard categories.
- **Strategic insights:** They provide high-level insights for system improvement and future development.

The serialized channel efficiently processes the routine aspects of the event, while the monolithic channel provides deeper, context-rich analysis and identifies potential edge cases.

Challenges of dual-channel workflows

Dual-channel workflows also present unique challenges in AV analysis.

- **Coordination complexity:** Managing two different processing channels and ensuring they complement each other can be challenging.
- **Resource allocation:** Determining the right balance of resources between the two channels requires careful planning and ongoing adjustments. Some analysts may thrive in one type of process but underperform in another.
- **Redundancy potential:** The analysis performed by each channel may overlap, requiring strategies to reconcile and integrate findings.
- **Training diversity:** The approach also requires maintaining two distinct sets of analytical skills within the team, which can consume more resources.


Best practices for implementing dual-channel workflows

To get the most from dual-channel workflows, consider following these best practices.

- **Clear channel definitions:** Establish criteria for routing events to each channel.
- **Inter-channel communication:** Develop systems for sharing insights between channels to enhance the overall analysis quality.
- **Balanced team development:** Invest in training to develop specialized skills for the serialized channel and holistic analytical capabilities for the monolithic channel.
- **Adaptive resource allocation:** Regularly review and adjust the allocation of resources between channels based on changing requirements and previous insights.
- **Integrated reporting:** Create reporting mechanisms that combine insights from both channels for a complete view of AV performance.

This hybrid, dual-channel method allows for efficient, high-volume data processing and a deep analysis of complex scenarios, giving you a more comprehensive approach to improving AV safety, reliability, and performance.

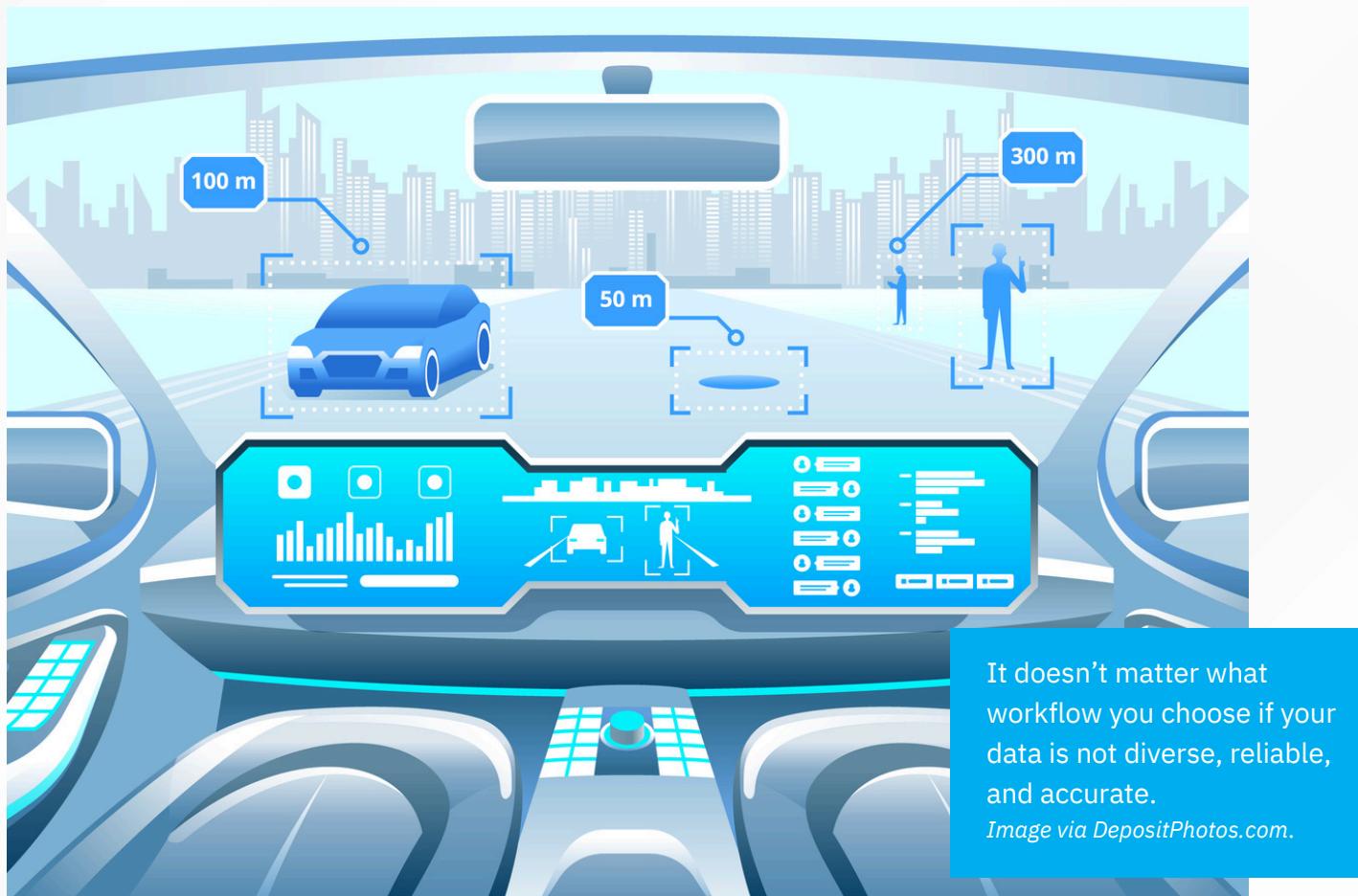
Choosing the right workflow: Navigating trade-offs for optimal AV analysis

Choosing the right workflow for your AV development requires understanding the tradeoffs of each approach.
Image via DepositPhotos.com.

Selecting the most appropriate workflow is a critical decision that can significantly affect the efficiency and effectiveness of your development efforts. Each approach—monolithic, serialized, and dual-channel—has tradeoffs. Understanding these tradeoffs is key to making an informed choice.

Comparative overview

The best workflow for your project is the one that best meets your requirements and constraints. There is no single correct answer. The following chart compares monolithic, serialized, and dual-channel workflows across various aspects relevant to AV analysis. This comparison highlights the strengths and limitations of each workflow type, providing a quick reference to support your decision-making process.


	Monolithic workflow	Serialized workflow	Dual-channel workflow
Analysis approach	Holistic, end-to-end	Specialized, sequential stages	Combination of holistic and specialized
Best suited for	Complex, nuanced scenarios	High-volume, specialized tasks	Mixed scenarios—routine and complex
Scalability	Limited	High	Moderate to high
Analysis depth	High	Moderate	High
Efficiency for routine tasks	Low to moderate	High	High
Anomaly detection	Excellent	Limited	Good
Consistency across analysts	Challenging	Easier to maintain	Moderate
Training requirements	Intensive, broad knowledge	Focused, specialized knowledge	Mixed, both broad and specialized
System-level insights	Excellent	Limited	Good

Key considerations for workflow selection

When choosing a workflow for your AV development process, consider the following key factors:

- **Scenario complexity:** A monolithic or dual-channel approach might be better if your project deals primarily with complex, nuanced scenarios requiring holistic understanding. A serialized workflow could be more efficient for high volumes of standardized tasks.
- **Team expertise:** Assess your team's current skills and capacity for training. Monolithic workflows require broad, in-depth knowledge, while serialized workflows allow for more specialized expertise.
- **Scalability requirements:** Consider what you need now and how you expect your project to grow. Serialized and dual-channel workflows offer better scalability for larger projects.
- **Anomaly detection requirements:** If identifying unusual patterns or edge cases is crucial for your project, monolithic or dual-channel workflows may be more effective.
- **Consistency and standardization:** Serialized workflows offer standardization and quality control advantages for projects requiring high consistency across analyses.

Remember that the choice of workflow is not a one-time decision. As your AV development project evolves, be prepared to reassess and adapt your approach so it continues to meet your changing requirements and goals.

It doesn't matter what workflow you choose if your data is not diverse, reliable, and accurate.

Image via DepositPhotos.com.

What's next?

Implementing any workflow—whether monolithic, serialized, or dual-channel—hinges on the quality of your data. Accurate, reliable, and diverse data is the fuel that powers your AV system's learning algorithms and performance analysis processes.

Partner with us to unlock the full potential of your AV development. Our teams of human-in-the-loop experts specialize in AV data labeling and analysis, providing the expertise and precision your AV systems need to thrive.

We understand the unique challenges of AVP, VNV, and triage processes. Whether you're working with large datasets or complex scenarios or need specialized expertise for nuanced tasks, we have the experience and resources to deliver results.

Take the first steps toward accelerating your AV development, improving the safety and reliability of your vehicles, and shaping the future of autonomous transportation.

[**Contact us today**](#) to explore how our data labeling and analysis services can help.

About Digital Divide Data (DDD)

Digital Divide Data (DDD) specializes in data labeling for autonomous driving. Clients value DDD's data labeling teams because they:

- Embrace technological innovation at every opportunity.
- Are nimble and responsive as project requirements evolve.
- Remain with your project, improving quality and efficiency over time.
- Essentially become an extension of your in-house workforce.

DDD's years of experience and collaboration capacity, combined with our tool-agnostic approach, give us a competitive edge. We meet benchmarks with a potent combination of expertise, discipline, and strategic thinking. And we welcome the opportunity to learn the details of your next project. Request a [consultation](#) today!

Learn more at digitaldividedata.com.

Changing How
the World Works.

Contact us

Our team of experts welcomes the opportunity to discuss your project requirements. [Please contact us today!](#)